
Where is the Return on CMM?

Termpaper

ICS 225 Software Processes – Fall 1997

Joachim Feise

1. Introduction
Many companies and organizations use the Capability Maturity Model (CMM) as
a vehicle for software process improvement. These organizations have spent
large amounts of money as well as considerable effort in implementing the
management practices prescribed by the CMM. Despite these investments,
these organizations have often not the faintest idea if there is any return on their
investments.
Other organizations are reluctant to implement a CMM-based software process
improvement program because the upper management does not want to commit
to invest considerable efforts into process improvement without evidence of
positive effects to the corporate balance sheet.
As Howard Rubin observed, "Although much is written about the topic in
qualitative terms, little quantitative information is available. In many ways, the
engineering process is an informational ’black hole’ - it draws in money and
resources like a magnet but little data emerges."
In addition, companies of smaller size are concerned that they can not afford the
up-front costs of implementing a software process improvement program.
In this termpaper I intend to report on studies in industry and government
organizations that try to quantify the return on investment for software process
improvement.

2. The Capability Maturity Model
In this section, I give a short overview of the Capability Maturity Model for
Software (CMM), as well as the history of the CMM.

2.1. History of the CMM
In 1987, the US Department of Defense (DoD) established the Software
Engineering Institute (SEI), an affiliate of the Carnegie-Mellon University in
Pittsburgh, PA, to develop a means to evaluate the software development
capabilities of the companies bidding for DoD contracts.
In response to the DoD’s request, the SEI developed a questionnaire to measure
the software process maturity of organizations. The questionnaire consisted of a
five-level framework. In Subsequent work the SEI evolved this framework into the
five levels of the CMM.
According to the IEEE, a process is "a sequence of steps per-formed for a given
purpose." The SEI expands the notion of a process to define a software process
as "a set of activities, methods, practices, and transformations that people use to
develop and maintain software and the associated products, e.g., project plans,
design documents, code, test cases, and user manuals."
The five-level CMM model, which is shown in figure 1, identifies the extent to
which a software organization has adopted and institutionalized the application of
process engineering concepts, techniques and practices to monitor, control and
improve the software process.

Figure 1: The SEI Capability Maturity Model

2.2. The CMM levels
The initial level, level 1, describes organizations that have an ad hoc, chaotic
process. Organizations at this level usually don’t follow formalized procedures,

cost estimates or project plans. Even if these formalized project control
procedures exist, the management does not enforce the use. Successful projects
in organizations at this level typically hinge on the efforts of a dedicated team.

Organizations at the repeatable level (level 2) use the fundamental project
control mechanisms of project management, product assurance and change
control. Organizations at this level can draw on their experience with similar work
(hence the term repeatable), but there are high risks of breakdowns of the project
control mechanisms when new, unknown challenges arise.

At the defined level, level 3, organizations are able to collect process data, and to
use this data to examine the process and aid in the decision of how to improve
the software process.

Level 4, the managed level, builds on the data collection that was established at
level 3 of the CMM. At this level, organizations have established quality and
productivity measurements for each key task. Organizations should also have a
process database in place, together with the resources to manage and maintain
it, and to analyze the data and assist in the use of the data.

At the optimizing level (level 5), organizations are able to analyze the software
processes and identify the weakest process elements and take actions to
improve them. The data collected allows rigorous defect cause analysis and
defect prevention.

According to Humphrey, et. al. (1991), "these maturity levels have been selected
because they do the following:
• Reasonably represent the historical phases of evolutionary improvement of

actual software organizations,
• Represent a measure of improvement that is reasonable to achieve from the

prior level,
• Suggest interim improvement goals and progress measures,
• Make obvious a set of immediate improvement priorities, once an

organization’s status in this framework is known."

2.3. The Software Process Maturity Questionnaire
The SEI process-maturity questionnaire consists of a set of yes/no questions on
a variety of software engineering and process issues. The questionnaire is
designed to facilitate reasonably objective and consistent assessments of
software organizations.
The questions in the maturity questionnaire cover three main areas (see figure
2).

Figure 2: Maturity questionnaire subjects by topic (from Bollinger et. al.,
1991)

• Organization and resource management.
This area is concerned with functional responsibilities, personnel, and other
resources and facilities.

• Software engineering process and its management.
This area measures the scope, depth and completeness of the software
engineering process and the way in which the process is measured, managed
and improved.

• Tools and technology.
In this area the tools and technologies used in the software engineering
process are considered. The questions in this area help determine the
effectiveness with which the organization employs basic tools and
methodologies.

According to Bollinger et. al. (1991), the questions from the tools and technology
area are not used in determining the organization’s process maturity level.
The questions form seven hurdles, each of which can be seen as a small
true/false test for a specific set of questions (see figure 3).

Figure 3: Grading of SEI Questionnaires (from Bollinger et. al., 1991)

As can be seen from figure 3, the CMM Level 1 is really not a level at all, but a
failing grade since it requires no effort whatsoever to reach that level. Even
answering all questions with no leads to a level 1 rating.

As pointed out by Humphrey & Curtis (1991), the questionnaire is not the sole
means used in evaluating organizations. They note that when properly trained
evaluators look for evidence of sound process practices, they have no difficulty
identifying organizations with poor practices. They assert that well-run software
processes leave a documented paper trail, like change-review procedures,
approval documents, and minutes of control-board meetings that less competent
organizations are unable to emulate.

3. Company Studies
In this section, I am summarizing several studies and company reports on the
return on investment on process improvement that appeared in the literature
since the CMM was introduced.

3.1. Process Improvement at Raytheon (Dion, 1993)
Raytheon’s Equipment Division started with a process improvement program in
the division’s Software Systems Laboratory in 1988, after performing a self-
assessment using the CMM. This self-assessment resulted in a rating at the
initial CMM level, level 1.
The process improvement program focussed on the areas where the self-
assessment identified deficiencies: policy and procedures, training, tools and
methods, and process metrics.
Raytheon developed a process improvement paradigm that is based on a three-
phase cycle of stabilization, control and change (see figure 4).

Figure 4: Raytheon’s process improvement paradigm (from Dion, 1993)

The process stabilization phase is concerned with distilling the elements of the
actual process used and institutionalizing it across all products, therefore
achieving visibility and providing repeatability.
The process control phase shifts the emphasis to the gathering of significant data
by instrumenting projects and to the analysis of the data to aid in understanding
how to control the process.
The process change phase puts the emphasis on determining how to adjust the
process, based on the results of the measurement and analysis of the previous
phase, and how to diffuse the new methods among the engineers.

The improvement is continuous, so the next cycle begins with the newly
improved process.
During the approximately five years the process improvement program was
underway before the date of the report, about $1 million per year were invested
into it. This investment moved the company to level 3 of the CMM.
However, getting management approval for continuing investments in this height
required quantitative data to show a return on the investment that justifies such a
large expenditure.
Raytheon’s approach to quantify the benefits of process improvements
categorizes the costs associated with a process as
• Performance: the costs associated with doing it right the first time.
• Appraisal: the costs associated with testing the product to determine if it is

faulty.
• Rework (nonconformance): the costs associated with fixing defects in the

code or design.
• Prevention: the costs incurred in attempting to prevent the fault from getting

into the product.
The sum of appraisal, rework and prevention costs is called "the cost of quality."
In three studies in 1990 and 1992 Raytheon analyzed the data of 15 projects, all
"reasonably large real-time systems." The analysis indicates a savings of about
$15.8 million in rework costs from the start of the process improvement initiative
to the end of the third study in 1992 (see figure 5).

Figure 5: Raytheon Savings analysis

Raytheon attributes the raise of the approval costs mainly to a 30-percent
decrease in total process costs, which gives the appraisal cost a proportional
push as a percentage of the total costs. However, the figure does not elaborate
on the total project costs.
As figure 5 shows, the rework costs shrank from 41 to 11 percent during the
study period. In analyzing these savings Raytheon found that the cost of fixing
defects found during the design and code phases rose slightly, mainly because
formal inspection replaced informal reviews. The largest contributor to the rework
savings was found to be the cost associated with fixing defects found during
integration, which decreased to 20 percent of its original value. Raytheon
attributes these savings to the design and code inspections, procedures, training
and requirements stability.
The cost of retesting also decreased considerably, to about half its original value.
This cost reduction is attributed to the fact that fewer problems were found during
the first test, which in turn is a direct effect of removing design and code errors
during inspections.
Raytheon also obtained productivity data on the projects in their analysis. The
data was measured in terms of "equivalent delivered source instructions per
man-month", which is used within Raytheon to capture the engineering effort
involved in developing the product. It is basically a measurement of source-code
size, which modified and reused lines of code being weighted according to the
relative effort (as compared to new code) of modifying or reusing it, including the
related documentation. Raytheon acknowledges that this is not scientifically
accurate because of variations among projects, but it is a measure widely
accepted by managers and developers. Figure 6 shows the productivity data.

Figure 6: Productivity increase at Raytheon

3.2. Process improvement at Motorola (Diaz, Sligo, 1997)
In November 1995, Motorola’s Government Electronics Division was assessed at
the CMM level 4. The assessment rated the policies and procedures at level 5.
Motorola uses quality, cycle time and productivity metrics to evaluate their
development programs. Also, each project performs a quarterly self-assessment,
in which any score for the Key Process Areas as defined in the CMM that falls
below 7 is considered a weakness.
Quality. The quality metric as used my Motorola is defined as defects per million
earned assembly-equivalent lines of code. A defect is defined as a problem that
escapes detection in the phase it was introduced; earned assembly-equivalent
lines of code is a measurement of the source code instructions, adjusted to the
percentage of project completion.
The project results show that on each level of the CMM the quality improves by a
factor of about 2 (see figure 7).

Figure 7: Quality by CMM level at Motorola GED

The improvement in quality from level 2 to level 3 is largely attributed to the
introduction of peer reviews at level 3. Similarly, the quality improvement from
level 3 to level 4 is due to the metric data collection at level 4. The data analysis
at level 5 causes another jump in the quality of the product.
Cycle time. The cycle time metric is calculated by dividing the calendar time for
the baseline project by the time required for the new project. So if the baseline
project took six months to complete, and the new project took two months, the
cycle time or X factor would be 3.
As in the Raytheon study, the selection of the appropriate baseline project could
not be done with scientific rigor. At Motorola, each project tracks its cycle time by
selecting a project with a similar target domain that was completed prior to 1992,
and by tracking its progress against that baseline project. The cutoff date of 1992
was apparently chosen because Motorola moved from level 2 to level 3 of the
CMM in that year. The paper does not explain the origin of the cycle time for the
levels 1 and 2, which Motorola had reached before the cutoff date. Motorola also

adjusts the baseline data to eliminate the effects of a qualification test cycle that
typically is part of government contracts as well as the effects of government
funding changes on a project. This way, Motorola asserts that the data is more
accurately comparable to data from non-governmental contracts.
Analysis of the cycle time data in figure 8 shows that overall, the cycle time
increases with the transitioning to higher levels of the CMM, reflecting the
underlying assumption that higher-maturity projects have a higher probability to
be completed within schedule.
The sole exception is the move from level 2 to level 3 of the CMM, which,
according to Motorola, may indicate a weak correlation between schedule
performance and maturity level.

Figure 8: Cycle time by CMM level at Motorola GED

The paper notes that this data is of preliminary nature, since many of the projects
used as basis for the analysis are still in development, so that the final schedule
performance is not yet known.
Productivity. In this study, Motorola defines productivity as the amount of work
produced divided by the time to produce that work. Motorola uses the same lines
of code metric as in the quality measurements for the productivity
measurements, i.e. they measure the assembly-equivalent lines of code and the
number of hours needed to produce that code.
In the paper, Motorola did not reveal the actual number of lines of code per hour,
for "proprietary reasons". The data in figure 9 is therefore normalized to level 2 of
the CMM.
The productivity is affected by other factors besides process maturity, most
importantly by technology changes and reuse. These factors act as multipliers in
the productivity of high-maturity-level projects.
Notable from the data shown is a drop in productivity when moving from level 2
to level 3 on the maturity scale. Motorola assumes this to be a side effect of
asking the project staff to do many new things all at once on level 3. The
institution of level 3 processes greatly affects the way the individual process
members perform their tasks, and an "absorption cycle" will be needed before
the full benefits of the higher-maturity processes can be observed.

Figure 9: Relative productivity by CMM level at Motorola GED

Motorola calculated a theoretical return of investment of roughly $600K for an
investment of about $100K, giving a return of 677 percent. However, given the
government nature of the contracts under study, not all these savings could be
realized as profits. Rather, Motorola emphasizes the non-monetary benefits of
process improvement, especially the increase in the number of projects that
finish within schedule, so that more engineering resources can be applied to the
acquisition and development of new business.

3.3. Software Development Improvement at Lockheed (Safford, 1993)
In 1990, General Dynamic Fort Worth Division, now Lockheed Fort Worth
Company, created their Software Process Review Team and tasked it with the
development and documentation of a company Standard Software Development
Process. This was triggered by a study of nine software industry software
systems that showed an alarming number of failures (see figure 10).

Figure 10: Study results of software systems

The study also found that over 50 percent of the contracts had cost overruns and
over 60 percent of the contracts had schedule overruns.
The team used the Capability Maturity Model as a reference to implement their
company’s software improvement process to
• Improve the software process estimates
• Improve the ability to manage software project costs and schedules
• Achieve consistency in Quality of Product
• Reduce the cost of software maintenance
The team designed a process architecture consisting of a matrix of four major
activities which covers six development life-cycle phases. The process was
mandated for all new development. Management expected immediate
improvements in the form of better estimates, better control, and a more capable
work force.
Results. One of the primary concerns of the management was the cost of the
process. In particular, the cost of training and administering of the process could
cause budget overruns.
With cost and schedule data tracked against the planned budget these cost and
schedule results were observed:
• Equipment cost is within plan
• Purchased software cost is within plan
• Man-hours are within plan
• Cost-to-complete expected within plan
• All deliverable schedules were met
• Internal schedules varied from plan

Another concern is the ability to benefit from the investment in training and
process improvement in future projects. The emphasis on the reusability of the
work products and the benefits of a more capable work force lead to these
results:
• Development methodology and training: Engineers from the pilot project were

able to "seed" other projects with knowledge of the software process. This
also made better estimations and planning possible.

• Requirements: Creating a detailed Software Requirement Specification took
twice as long as originally planned, but the time was recovered through better
communication with the customer and better communication and coordination
within the development team.

• Design: A framework of proven component designs with detailed
specifications of interfaces and functionality allows to quickly determine the
reusability of components.

• Code: Reused code must still be integrated and has to undergo a certain
amount of testing, so the reuse of code, while important, is of limited use.

• Configuration management: The plans and procedures for configuration
management were written for reuse by other projects from the onset. This can

lead to future savings of project overhead costs, and ensures that experience
with the process gets propagated.

• Software Development plan: The Software development plan is used to
record design decisions at the beginning of the project, and also changes that
are made during the project. This is useful for planning purposes in future
projects.

Unfortunately, the author of this study does not report quantitative data on the
improvements that were obtained by the use of their software process.

3.4. Return on Investment throughout the industry (Brodman,
Johnson, 1996)

The final study I analyzed reports on data on the return on investment from
approximately 35 companies and government agencies.
This study found that most organizations that participated in the study did not
have data on the return on investment from the implementation of software
processes. However, the authors were able to collect raw data and analyze the
data to produce a meaningful and more complete picture of the return on
investment.
The authors noticed a lack of consensus of a definition of "Return on Investment"
between government organizations and the industry. In general, government
organizations focused on the dollar value of the return on investment, while the
industry focuses on the personnel side. Since labor resources are a precious
commodity in the software industry, process improvement initiatives are viewed
in light of the effort in labor hours required to implement the initiatives. The return
values expected by industry are by and large centered around meeting cost
predictions, improving performance and staying within or under budget.
To find out about process improvement trends common to the organizations
under study, the authors mapped the process maturity against the company
backgrounds. Table 1 shows the observed correlations between the maturity
levels and factors that influence the process maturity.

Degree of correlation Factor correlating to process maturity
Percent of company revenue from DoD
Number of employees in companyInsignificant correlation
Duration of CMM-based process improvement
program
Smaller software staff
Shorter project durationCorrelation to lower

process maturity
Software contract average value below $1million
Directorate-level funding
Number of software organizations within company

Correlation to higher
process maturity

Percent of software budget for process improvement

Table1: Factors influencing process maturity

The benefits of process improvements reported from the organizations were
classified into nine categories of metrics. The data shown in table 2 indicates that
the greatest growth in metric usage occurs as the organization matures from
level 1 to level 2 of the CMM. This confirms the observation of Bollinger et. al
(1991) that level 2 is the first level to require effort from the organization.

Metric
category

Measurement Level 1
percent
usage

Level 2
percent
usage

Level 3
percent
usage

Level 4
percent
usage

Process Compliance 0 43 50 100
Resources 0 14 25 100

Stability Software
requirements
tracking

0 25 75 100

Problem reporting
status

100 86 100 100

Statistics on
development
defects

40 71 100 100

Defect profile 20 71 75 100
Product quality 0 14 50 100

Quality

Percent of defects
found in inspections

0 14 50 100

Cost Cost data 25 100 100 100
Staffing Personnel trends 100 100 (more

consistent
across

lifecycle)

100 (more
consistent

across
lifecycle)

100 (more
consistent

across
lifecycle)

Delivered lines of
code

20 86 75 100

New lines of code 40 86 100 100Productivity
Percent of reused
code

0 71 75 100

Estimate to
complete

80 71 50 100

Effort
Rework effort and
time

0 29 50 -

Variance 20 100 100 100
Schedule

Milestones 100 100 100 100
Module
development

80 86 75 100

Design 60 57 100 100
Test 80 86 100 100
Rework - 14 - -

Progress

Earned value 0 57 75 100

Table 2: Measurement changes with growth in maturity

Further analysis of the data showed that there is an inconsistency with which
these metrics are collected within the organizations participating in the study over
the software lifecycle. The majority of the metrics is collected in four to five
different patterns across the lifecycle.
Data on the benefits of CMM-based process improvement initiatives exists in the
form of pockets of individual statistics. When evaluated across the industry, the
data shows that process improvement is making a difference. The results are
summarized in table 3.

Metric
category

Measurement Benefits realized by various
software organizations*

Productivity Increase in productivity 10-20%, 90-100%, 50%, 15-20%,
5%, 130%, 12%, 2.5-6.3%, 35%

Reduction in defects 10%, 80%, 50-70%, 50%
Reduction in error rate 45%

Quality Product error rate From 2.0 down to 0.11 per KLOC,
from 0.72 down to 0.13 per thousand
non-commented source statements

Project dollars saved to
dollars invested

1.5:1, 2.0:1, 4:1, 6:1, 7.7:1, 10:1,
1.26:1, 5:1

Project dollars saved $2million to $3.4million
Code problems during
integration

20% of original value

Decrease in cost of retesting 50%

Cost

Cost savings of metrics
program

50-300%, 40-290%

Within estimate 5% of estimate
On-time deliverables From 51% up to 94% on time
Project completion From 50% down to 1% late

Schedule

Savings in schedule 10%, 20%
Reduction in rework 5 to 10%, from 40% down to 25% of

effort, from 41% down to 11% of
project costEffort

Savings in test time 10 test hours per one analysis hour
* Results from different organizations are separated by commas

4. Conclusions
It is now ten years after the Software Engineering Institute was established to
develop a questionnaire to evaluate the software development capabilities of
companies and governmental organizations.
I found it rather astonishing that only a few case studies have been published
that indicate that CMM-based software process improvement pays off. In
addition, most of these studies focus on DoD contracts, which can appear to the
outside observer that these companies just "followed the money", because
without implementing process improvement their business basis would have
been diminished or completely vanished, since the DoD nowadays takes the
process maturity into account when awarding new contracts.
Even the SEI itself acknowledges the lack of data, noting that the CMM does not
explicitly require the results of each change to the process being measured
(Herbsleb, Goldenson, 1996). This also hints at the possibility that a large
number of companies that are doing business with the DoD invest into process
improvement only because it is a requirement of the DoD, but they don’t seem
willing to go the extra mile and determine for themselves if process improvement
helps their own bottom line.
All the studies I looked at stressed the importance of support from upper
management to overcome resistance to change on the developer level and in
middle management. Funding and support from the directorate level has a high
correlation to the success of process improvement activities.
The available data shows that process improvement appears to pay off, although
it may take a couple of years for the benefits to outweigh the investments. The
biggest weakness in the data is that it is unclear whether the data is
representative. It may be that only successful organizations publish these case
studies, and unsuccessful experiences are not shared because of the fear of a
negative impact on future business with the DoD.
I also noticed that commercial software development companies were mostly
absent from the published studies. This again reinforces my suspicion that the
upper management in most companies is still not convinced of the potential
payoff that software process improvement has to offer, and dismiss it as a DoD
fad that has no real place in the commercial world. Of course, the scarcity of the
available data only serves as a case in point.
In my opinion, I think that the management in commercial software development
companies is convinced that process improvement reaps benefits, but they are
not willing to commit to the considerable upfront investment that all studies seem
to imply.

5. Literature
Bollinger, T.B., McGowan, C. (1991): A Critical Look at Software Capability

Evaluations, IEEE Software, July 1991
Brodman, J.G., Johnson, D.L (1994): What Small Businesses and Small

Organizations Say About the CMM, Proceedings of ICSE-16, 1994
Brodman, J.G., Johnson, D.L. (1996): Return on Investment from Software

Process Improvement as Measured by U.S. Industry, Crosstalk, April 1996
Caputo, K. (1996): Software CMM Maturity Levels: Can You See Beyond the

Labels, Crosstalk, August 1996
Diaz, M., Sligo, J. (1997): How Software Process Improvement Helped Motorola,

IEEE Software, Sept.-Oct. 1997
Dion, R. (1993): Process Improvement and the Corporate Balance Sheet, IEEE

Software, July 1993
Hersleb, J.D., Goldenson, D.R. (1996): A Systematic Survey of CMM Experience

and Results, Proceedings of ICSE-18, 1996
Humphrey, W.S., Curtis, B. (1991): Comments on ’A Critical Look’, IEEE

Software, July 1991
Humphrey, W.S., Kitson, D.H., Gale, J. (1991): A Comparison of U.S. and

Japanese Software Process Maturity, Proceedings of ICSE-13, 1991
IEEE-STD-610, Institute of Electrical and Electronic Engineers
Kitson, D.H., Masters, S.M. (1993): An Analysis of SEI Software Process

Assessment Results: 1987-1991, Proceedings of ICSE-15, 1993
Lawlis, P.K., Flowe, R.M., Thordahl, J.B. (1995): A Correlational Study of the

CMM and Software Development Performance, Crosstalk, September 1995
Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V. (1993): Capability Maturity

Model for Software, Version 1.1, Software Engineering Institute, Carnegie-
Mellon University, Pittsburgh, PA, 1993

Rubin, H.A. (1993): Software Process Maturity: Measuring its Impact on
Productivity and Quality, IEEE International Software Metrics Symposium,
1993

Safford, E.L. (1993): Improving Software Development Through the Proper
Implementation of a Standard Software Process: Case Study and Lessons
Learned, IEEE 12th Digital Avionics Systems Conference, 1993

